Fastener Mart™

SELECTING CORROSION RESISTANT ALLOYS FOR FASTENERS 1

RATINGS

1 - EXCELLENT

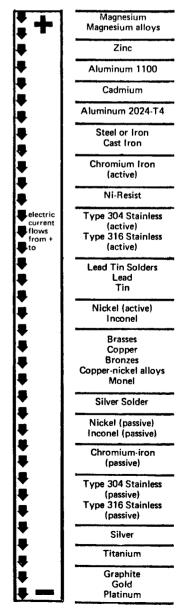
2 - GOOD 3 - FAIR

CHEMICAL CORROSION GUIDE

3 - FAIR OTTE				OSION			
Substance	Stainless Steel			Brass	Cilia		
	410 416	302 303 304	316	and Naval Bronze	Silicon Bronze	Monel	Aluminum
Acetate Solvents, Crude Acetate Solvents, Refined Acetic Acid, Crude Acetic Acid, Refined Acetic Anhydride	2 1 - -	1 1 2 2 2	1 1 1 1 1	3 1 - -	2 1 2 2 2	2 1 2 2 2	1 1 2 1 1
Acetone Acetylene Alcohols Aluminum Sulfate Alums	1 1 1 —	1 1 3 3	1 1 1 2 2	1 2 - -	1 1 2 2	1 2 1 2 2	1 1 2 3 1
Ammonia Gas Ammonium Chloride Ammonium Hydroxide Ammonium Nitrate Ammonium Phosphate	1 3 1 1	1 3 1 1	1 1 1 1	- 	2 - 3 -	1 3 3 2	1 2 1
Ammonium Phosphate (Neutral) Ammonium Phosphate (Acid) Ammonium Sulfate Asphalt Beer	2 3 2 2	1 2 1 1	1 1 1 1	3 - - 2 2	3 3 1 2	2 2 2 1 1	3 3 - 1 1
Benzene or Benzol Benzine Borax Boric Acid Calcium Bisulfite	1 1 1 3	1 1 1 2 2	1 1 1 1	1 1 2 —	1 1 2 2 2	1 1 1 1	1 1 2 1
Calcium Hypochlorite Cane Sugar Liquors Carbon Dioxide Gas Carbon Disulfide Carbon Tetrachloride	- 2 1 2 1	3 1 1 1	2 1 1 1	3 2 1 3	3 1 1 —	3 1 1 3	— 1 1 1 2
Chlorine Gas Chlorine (Wet) Chromic Acid Citric Acid Coke Oven Gas	2 - 3 3 1	2 - 2 2 1	2 3 1 1	2 - - - 3	2 3 - 2 3	1 3 3 2 2	_ _ _ 2 2
Copper Sulfate Core Oils Cottonseed Oil Creosote Ethers	1 1 1 1	1 1 1 1	1 1 1 1	1 1 3 1	3 1 1 2 1	3 1 1 1	1 1 2 1
Ethylene Glycol Ferric Sulfate Formaldehyde Formic Acid Freon	1 1 1 —	1 1 1 2 1	1 1 1 1	2 - - 1	1 3 2 2 1	1 3 1 2 1	2 2 2 — 2
Furfural Gasoline Glucose Glue Glycenne	1 1 1 1	1 1 1 1	1 1 1 1	2 1 1 3 2	2 1 1 1	1 1 1 1	1 1 1 3 1
Hydrogen Cyanide Hydrofluoric Acid Hydrogen Fluoride Hydrogen Hydrogen Peroxide	3 - 3 1 1	1 - 2 1 1	1 2 1 1	_ _ 3 1 _	- 3 2 1 3	2 1 1 1 2	1 - - 1 2
Hydrogen Sulfide (Dry) Hydrogen Sulfide (Wet) Lacquer Solvents Lime-Sulphur Magnesium Chloride	2 3 1 2 3	1 2 1 1 2	1 1 1 1	- 3 3 - 3	 1 3 2		1 1 1 —
Magnesium Hydroxide Magnesium Sulfate Mercury Milk Molasses	1 1 1 2 2	1 1 1 1	1 1 1 1	2 2 - 3 2	1 1 3 1	1 1 2 3 1	3 2 - 1 1

GALVANIC CORROSION

(ELECTROCHEMICAL)


GALVANIC ATTACK

1 IF POSSIBLE, USE THE SAME OR SIMILAR METALS IN AN ASSEMBLY, ESPECIALLY WHERE AN ELECTROLYTE MAY BE PRESENT.

WHEN DISSIMILAR METALS ARE
USED TOGETHER IN THE PRESENCE
OF AN ELECTROLYTE, SEPARATE THEM
WITH A DIALECTRIC MATERIAL SUCH AS
INSULATION, PAINT OR COATING.

GALVANIC SERIES CHART

THIS REPRESENTATIVE SAMPLE OF DISSIMILAR METALS INDICATES RELATIVE POTENTIAL FOR GALVANIC CORROSION. COUPLING METALS WIDELY SEPARATED ON THE CHART IS MOST LIKELY TO CAUSE CORROSION.

